
Speed Optimization of 3D Interlocking Puzzle Generation

Dominic Ngoetjana
 Department of Computer Science

 University of Cape Town

 ngwkga001@myuct.ac.za

Nkosi Gumede
 Department of Computer Science

 University of Cape Town

 gdmnko003@myuct.ac.za

ABSTRACT

In this paper, we present a proposal for our Computer Science

Honours project, which is based on implementing algorithms to

generate 3-Dimensional (3D) printable recursive interlocking

puzzles—these being puzzles that use 3 dimensions to ensure that

its component pieces are interlocked. Recursive interlocking is a

property of interlocking puzzle pieces that enables them to form a

puzzle such that the last piece inserted into the puzzle is always the

first one that can be taken out and ensures that all other puzzle

pieces are immobilized. While an implementation of this already

exists, the algorithm that creates pieces is slow; so, we propose a

solution to this. Our plan is to implement a program that does the

following: 1) takes a triangulated object mesh as input. 2)

Voxelizes the input object (converts into a voxel representation). 3)

Generates voxelized interlocking puzzle pieces using an algorithm.

4) Triangulates the puzzle pieces using the software. 5) Add a

triangulated outer surface. 6) Creates a file suitable to send to a 3D

printer for 3D printing. This process, particularly step 3, will be

done faster than the original implementation by adjusting it for

parallelization. In this proposal, we distinguish between the

respective paths of both team members (Dominic Ngoetjana and

Nkosi Gumede) in creating the final system.

CCS Concepts

 Computational geometry ➝ 3D printing

 Computing methodologies ➝ Massively parallel

and high-performance simulations

Keywords

Computational geometry, 3D printing, interlocking puzzles

1. PROJECT DESCRIPTION

“3D puzzles are generally nontrivial geometric problems

that challenge our ingenuity. They have been longstanding

stimulating recreational artefacts, where the task is to put

together the puzzle pieces to form a meaningful 3D shape”

[3]. For our purpose, this is expanded to include interlocking

puzzles - these being puzzles where assembled pieces are

locked together and rendered immobilized, with one piece

(known as a key) that is mobile, and which directly locks all

adjacent pieces. This process is taken even further by making

it recursive i.e., pieces must be assembled and disassembled

in a deterministic order, with each subsequent piece

unlocked (mobilized) by the key, and the remaining

assembly of pieces can remain in an interlocking state (an

example of this is shown in Figure 1). The problem with this

approach is that it requires a blocky outer surface aligned on

a regular grid and can be very slow (up to 10 hours). We

propose a solution to this problem through optimizing the

approach by speeding up the computation using multiple

CPUs in a cluster.

The importance of our problem is found in the end-goal. We

want to be able to (as fast as possible) 3D-print various types

of interlocking puzzles and provide new, engaging, and

challenging ways to solve such puzzles. We also want to

contribute to the advancement of this field as it is low in the

number of published resources over the years since its

prevalence. Our solution will provide the means for faster

mass production of interlocking puzzles, reducing the

waiting time for computation. With that said, it is by no

means an easy task and we anticipate some difficulties in the

project - repurposing [3]’s algorithm for multiple CPUs will

be a challenging task as we will have to determine the most

efficient and data race-free techniques to use. In addition,

there may be difficulties with integrating the various

software systems used throughout the different phases of the

project, as well as ensuring file type compatibility.

2. PROBLEM STATEMENT

As observed from our respective literature reviews, there are

many unsolved problems with respect to creating 3D

interlocking puzzles. Some of the most popular approaches

are outdated, too slow or very difficult to implement. We aim

to implement a selected algorithm to produce 3D printable

interlocking puzzle pieces. A key requirement of

interlocking is the assembly and dis-assembly of puzzles -

puzzle pieces should immobilize each other.

Our main research question asks if an existing interlocking

puzzle approach can be applied to a triangular mesh input

object to produce 3D printable interlocking puzzle pieces

faster than ever before using high-performance computing

techniques such as parallelism. The main algorithm is by

Song et al. [3]. It is described in section 5 of their paper titled

‘Recursive Interlocking Puzzles’. This paper was published

in 2012. In 2015, Peng Song and his colleagues went deeper

into the topic of interlocking puzzles by addressing the

requirement of the puzzle pieces being 3D printable in the

paper entitled ‘Printing 3D objects with interlocking parts’

[4].

For the purpose of this project, our supervisor is the client.

We are expected to produce 3D printable interlocking puzzle

pieces given a triangle mesh object as input. The key

requirement is that we speed up the implementation of the

algorithm relative to what currently exists using efficient

programming languages and algorithms. We will be using a

collection of third-party software to help in various stages of

the project and integrate them into the system. We aim to

ensure that even the slowest of algorithms finish executing

in a reasonable amount of time for the purpose of

performance comparison.

3. PROCEDURES AND METHODS

Design features: Efficient programming language such as

C++, C# and Java

Development platform: Qt, Visual Studio, Netbeans IDEs

(on Ubuntu Linux)

Implementation strategy: Code the implementation of

Song et al. [3] algorithm and use it to generate puzzle pieces

when a voxelized object has been served as input. This code

will be added to the sequence of a chain of algorithms used

to fulfil the overall objective.

Expected challenges: Time, Complexity of algorithm, 3D

printing, Not achieving speedup, Concurrency in

multithreaded implementations, Testing, Debugging

Testing and Evaluation Plan

We plan to employ testing at every given stage of the system

development phase. Every new implementation will be

tested independently before being added to the full working

system. We will test to check that the system works as

expected. Testing will become increasingly valuable as we

add components to the system. Testing should make it easier

to debug the system and its use cases by process of

elimination. We will evaluate our system by comparing its

performance (time in seconds) to the existing algorithm and

all other known and freely available implementations of

generating recursive interlocking puzzles. We will ensure

that speedup is accomplished by running our integrated

system using a varying number of cores and selecting the

most optimal number of cores.

4. ETHICAL, LEGAL AND

PROFESSIONAL ISSUES

We will be testing all the components of our system on

computers. Since this project does not require any third

parties or user experiments; there are no ethical, legal nor

professional issues to worry about concerning people who

are not involved in the project itself. Ethics, legal and

professional issues will apply within our working

relationship with our supervisor and the computer science

department.

The Association for Computing Machinery (ACM) [1]

asserts that general ethical principles include avoiding

causing harm, honesty, and the consideration of

stakeholders. As an ethical requirement, we will not

plagiarize the work of others and cite our sources. We will

report our findings and limitations, ensuring that they have a

high degree of validity. As a legal requirement, we will not

participate in any criminal activity. We will not allow

ourselves to be unjustifiably enriched, harm others or

causally misrepresent our system. We will only use the

resources we are permitted to use. As a professional

requirement, we will ensure to conduct ourselves in a

professional manner throughout the duration of this project.

We will arrive at meetings on time, communicate

professionally, conform to deadlines, and maintain a high

standard of work within our area of competence.

5. RELATED WORKS

Our literature reviews focused explicitly on algorithms to

generate 3D interlocking puzzles. We split the algorithms by

approach. The exhaustive search approach describes the

naive method of generating puzzle pieces. This approach

was commonplace in the early days of puzzle generation and

inspired the newer approaches. Bill Cutler’s research paper

on six-piece burr puzzles [2] shows that it is possible to find

interlocking puzzle pieces by exhaustively searching for

them.

Song et al. [3] and Song et al. [4] discuss algorithms to create

3D recursive interlocking puzzles via the construction

approach. The construction approach refers to a method of

generating interlocking puzzle pieces recursively from a

source object. This can be achieved by dividing the source

object into its constituent puzzle pieces (top-down approach)

or by creating new puzzle pieces from the source object

(bottom-up approach). Interlocking does not necessarily

have to be produced with voxelized puzzle pieces. This is

demonstrated by Lau et al. [5] who converted furniture

models into parts and connectors using lexical and structural

analysis. Wang et al. [7] presented a general framework for

designing interlocking structures which use direction

blocking graphs and analysis tools.

Lo et al. [6] used the geometric design approach to generate

3D polyomino puzzles. They created shell-based 3D puzzles

with polyominoes as the component shape of the puzzle

pieces. Xin et al. [8] also explored the governing mechanics

of interlocking puzzles using geometric methods. They

replicated and connected pre-defined six-piece burr

structures to create larger interlocking puzzles from 3D

models. Zhang and Balkcom [9] explore a solution to

assemble voxelized interlocking structures using joints

(pairs of male-female connectors on adjacent voxels) to

guarantee interlocking and assembly order. The geometric

design approach refers to using lines and curves generated

by a mathematical equation to generate puzzle pieces.

Once our system has generated the voxelized puzzle pieces,

we will use [4] to add the outer surface back to the voxelized

puzzle pieces before triangularization (the process of

representing an object as a triangle mesh) as described in

Figure 2. All the above-mentioned research papers are

related to our project in various ways. They help us

understand the complexities (such as time, spatial capacity

and ease of implementation) involved in algorithms to

generate 3D interlocking puzzles.

6. ANTICIPATED OUTCOMES

Outline. Put simply, the end-goal is for our system to take

in a 3D triangle mesh (one compatible with [3]’s algorithm,

generate and output a similar mesh, but one with interlocking

pieces and a surface; the output mesh can then be fed into a

3D printer to manufacture a fully-realized interlocking

puzzle. This process will involve not only using provided

software for some of the intermediate steps but also requires

implementing (and optimizing) [3]’s algorithm to make it

run faster.

System. The optimization of [3]’s algorithm will be the most

difficult aspect of the software implementation phase of the

project. This is because [3] lays out the algorithm to work

recursively, but not in parallel and not taking multicore

architectures into consideration. Our final developed

software must be able to reliably input any compatible 3D

triangle mesh (regardless of dimensions) and fragment it into

interlocking pieces. Another challenge with developing this

software is determining how to parallelize the algorithm

correctly, i.e., so that it speeds up the process rather than

slowing it down. The final software must generate

interlocking pieces faster than [3]’s. In terms of the system,

the entire process of inputting and outputting a 3D triangle

mesh model must be well integrated, automated, and not

require the user’s intervention. The challenge here will be

with integrating the various software systems used (one for

voxelizing the input model, triangulating it, and adding back

its surface, and one for generating the interlocking puzzle)

into one contiguous and autonomous system.

Impact and factors. Our ultimate goal with the project is to

take an existing design of an algorithm that generates

interlocking puzzles and optimize it to run faster by taking

advantage of parallelizing techniques and multicore

architectures; so we expect our implementation to be able to

take in any 3D model (compatible with [3]’s algorithm) and

generate interlocking puzzle pieces significantly faster. This

difference in speed will help with mass production of

interlocking puzzles and will allow for more time for

geometric post-processing of the model on a 3D printer.

There are few key factors to determine the success of the

project—one of these is a favourable (increase)

measurement of speedup from [3]’s algorithm and

implementation to ours. Another factor is successfully

fragmenting the input 3D mesh into interlocking pieces.

Lastly, being able to 3D-print our fragmented model into a

plastic object with pieces that interlock and physically fit

into each other with minimal space between pieces. The

project will be considered successful when the outline

(above) is met.

7. PROJECT PLAN

7.1. Risks and Risk Management Strategies

The risks and risk management strategies for the project can

be found in Appendix 1.

7.2. Timeline

The project runs from 11 March 2019 to 7 October 2019.

The timeline can be found in Appendix 2 (Gantt Chart).

7.3. Required Resources

The most important of our required resources (particularly

in terms of equipment) is a multicore CPU, access to a High-

Performance cluster, and a 3D printer with materials—all of

which will be provided/granted by the project supervisor. On

the software side, we require specialized software for

manipulating triangle meshes (also provided by supervisor),

a Linux distribution environment (personal computer), and

C++/Java IDEs for modifying the framework and

developing the puzzle creation algorithm respectively

(personal computers). 3D models can easily be sourced from

the internet for testing purposes.

7.4. Deliverables

The main deliverable for the project is the fully integrated

system that inputs a 3D mesh, outputs it in pieces, and can

be fed into a 3D printer, as described in previous sections.

Other deliverables, in no particular order, include:

 Literature review

 Project proposal

 Proposal presentation

 Software feasibility demonstration

 Project paper (draft and final)

 Project demonstration

 Poster

 Project website

 Reflection paper

 Fragmentation algorithm implementation,

including prototypes

7.5. Milestones

We have several milestones throughout the project—with

our biggest being the successful configuration of our

framework to handle puzzle pieces/parts, successful

implementation of the [3] algorithm and subsequently

adjusting it for parallelization, and the integration of our

respective sections into one system.

7.6. Work Allocation

Work is split as indicated in Figure 2. Dominic (D) will be

converting the 3D triangle mesh into a voxelized

representation, converting each generated interlocking piece

back into a triangle mesh, and adding the surface back on.

Nkosi (N) will be reproducing Song et. al.’s original

algorithm, then once successful, adjusting the algorithm for

parallelization on a high-performance cluster, and finally

applying the algorithm to the voxelized representation. The

voxelized representation is used to output a suitable file to

send to a 3D printer. The culmination of both works is a 3D-

printable and interlocking puzzle (as shown on the right of

Figure 2).

8. REFERENCES

[1] ASSOCIATION FOR COMPUTING MACHINERY.

ACM Code of Ethics and Professional Conduct.

Available online: https://www.acm.org/code-of-ethics

[Accessed 10 May 2019]

[2] CUTLER, B. 2007. A Computer Analysis of All 6-Piece

Burrs. Available online:

http://billcutlerpuzzles.com/docs/CA6PB/index.html

[Accessed 23 April 2019]

[3] SONG, P., FU, C., AND COHEN-OR, D. 2012.

Recursive Interlocking Puzzles. ACM Transactions on

Graphics, Vol. 31, No. Article 128.

[4] SONG, P., FU, Z., LIU, L., AND FU, C. 2015. Printing

3D object with interlocking parts. Computer Aided

Geometric Design, Vol. 35 Issue C, 137-148.

[5] LAU, M., OHGAWARA, A., MITANI, J., AND

IGARASHI, T. 2011. Converting 3d furniture models to

fabricatable parts and connectors. ACM Tran. on Graphics

(SIGGRAPH) 30, 4. Article 85.

[6] LO, K.-Y., FU, C.-W., AND LI, H. 2009. 3D

Polyomino puzzle. ACM Tran. on Graphics (SIGGRAPH

Asia) 28, 5. Article 157.

[7] WANG, Z., SONG, P., AND PAULY, M. 2018.

DESIA: a general framework for designing interlocking

assemblies. ACM Transactions on Graphics, Vol. 37 Issue

6, No. 191.

[8] XIN, S.-Q., LAI, C.-F., FU, C.-W., WONG, T.-T., HE,

Y., AND COHEN-OR, D. 2011. Making burr puzzles

from 3D models. ACM Tran. on Graphics

(SIGGRAPH) 30, 4. Article 97.

[9] ZHANG, Y., AND BALKCOM, D. 2016. Interlocking

structure assembly with voxels. 2173-2180.

10.1109/IROS.2016.7759341.

APPENDIX

1. RISKS AND RISK MANAGEMENT

 RISK LIKELIHOOD IMPACT MITIGATIONS / WARNINGS / REMEDIES

1 No/revoked access to university high-performance cluster LOW HIGH

1. Book access to resources in advance

2. Comply with cluster rules and requirements

2 Member/s unable to finish sections on time LOW MEDIUM

1. Ensure there’s a clear separation between allocated

project sections

2. Ensure each part can be evaluated a stand-alone

project

3 Unable to code [3]’s algorithm LOW HIGH

1. Ensure complete understanding of the algorithm

2. Communicate difficulties with supervisor

4 Unable to adjust [3]’s algorithm for parallelization MEDIUM LOW Use a serial (unadjusted) algorithm

5
Development takes longer than expected due to inexperience or

other reasons
MEDIUM MEDIUM

1. Start all tasks (including learning skills and tools)

early

2. Communicate skill shortages with supervisor and

make further provisions for gaining them

6 Unable to integrate members’ sections into contiguous system LOW HIGH Ensure project outputs are clear, including file and object formats

2. GANTT CHART

